Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(4): 292, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658527

RESUMO

Although bevacizumab (BVZ), a representative drug for anti-angiogenesis therapy (AAT), is used as a first-line treatment for patients with glioblastoma (GBM), its efficacy is notably limited. Whereas several mechanisms have been proposed to explain the acquisition of AAT resistance, the specific underlying mechanisms have yet to be sufficiently ascertained. Here, we established that inhibitor of differentiation 1 (ID1)high/activin Ahigh glioblastoma cell confers resistance to BVZ. The bipotent effect of activin A during its active phase was demonstrated to reduce vasculature dependence in tumorigenesis. In response to a temporary exposure to activin A, this cytokine was found to induce endothelial-to-mesenchymal transition via the Smad3/Slug axis, whereas prolonged exposure led to endothelial apoptosis. ID1 tumors showing resistance to BVZ were established to be characterized by a hypovascular structure, hyperpermeability, and scattered hypoxic regions. Using a GBM mouse model, we demonstrated that AAT resistance can be overcome by administering therapy based on a combination of BVZ and SB431542, a Smad2/3 inhibitor, which contributed to enhancing survival. These findings offer valuable insights that could contribute to the development of new strategies for treating AAT-resistant GBM.


Assuntos
Ativinas , Inibidores da Angiogênese , Bevacizumab , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Proteína 1 Inibidora de Diferenciação , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/irrigação sanguínea , Humanos , Animais , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteína 1 Inibidora de Diferenciação/genética , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Ativinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Camundongos Nus , Apoptose/efeitos dos fármacos
2.
BMC Biol ; 22(1): 23, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287397

RESUMO

BACKGROUND: Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS: Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS: Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.


Assuntos
Autofagossomos , Glioblastoma , Humanos , Autofagossomos/metabolismo , Glioblastoma/metabolismo , Autofagia , Proteômica , Lisossomos/metabolismo , Estresse do Retículo Endoplasmático
3.
Int J Radiat Biol ; 100(2): 220-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37812149

RESUMO

PURPOSE: Due to the expanding repertoire of treatment devices that use radiation, the possibility of exposure to both low-dose and high-dose radiation continues to increase. Skin is the outermost part of the body and thus directly exposed to radiation-induced damage. In particular, the skin of diabetes patients is fragile and easily damaged by external stimuli, such as radiation. However, damage and cellular responses induced by ionizing irradiation in diabetic skin have not been explored in detail. In this study, we investigated the effects of several irradiation dose on normal keratinocytes and those from type II diabetes patients, with particular focus on DNA damage. MATERIALS AND METHODS: Cellular responses to low-dose radiation (0.1 Gy) and high-dose radiation (0.5 and 2 Gy) were evaluated. Cell cycle analysis was conducted via flow cytometry and cell viability analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Proteins related to the DNA damage response (DDR) and repair signaling pathways and apoptosis were detected via immunoblot analysis. Apoptosis and cell differentiation were additionally examined in 3D skin organoids using immunohistochemistry. RESULTS: Compared to respective control groups, no significant changes were observed in cell cycle, DDR and repair mechanisms, cell survival, and differentiation in response to 0.1 Gy irradiation in both normal and diabetes type II keratinocytes. On the other hand, the cell cycle showed an increase in the G2/M phase in both cell types following exposure to 2 Gy irradiation. At radiation doses 2 Gy, activation of the DDR and repair signaling pathways, apoptosis, and cell differentiation were increased and viability was decreased in both cell types. Notably, these differences were more pronounced in normal than diabetes type II keratinocytes. CONCLUSIONS: Normal keratinocytes respond more strongly to radiation-induced damage and recovery than diabetes type II keratinocytes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/radioterapia , Queratinócitos/efeitos da radiação , Radiação Ionizante , Doses de Radiação , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Apoptose/efeitos da radiação , Relação Dose-Resposta à Radiação
4.
Cell Death Dis ; 14(12): 822, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092725

RESUMO

Jagged1 (JAG1) is a Notch ligand that correlates with tumor progression. Not limited to its function as a ligand, JAG1 can be cleaved, and its intracellular domain translocates to the nucleus, where it functions as a transcriptional cofactor. Previously, we showed that JAG1 intracellular domain (JICD1) forms a protein complex with DDX17/SMAD3/TGIF2. However, the molecular mechanisms underlying JICD1-mediated tumor aggressiveness remains unclear. Here, we demonstrate that JICD1 enhances the invasive phenotypes of glioblastoma cells by transcriptionally activating epithelial-to-mesenchymal transition (EMT)-related genes, especially TWIST1. The inhibition of TWIST1 reduced JICD1-driven tumor aggressiveness. Although SMAD3 is an important component of transforming growth factor (TGF)-ß signaling, the JICD1/SMAD3 transcriptional complex was shown to govern brain tumor invasion independent of TGF-ß signaling. Moreover, JICD1-TWIST1-MMP2 and MMP9 axes were significantly correlated with clinical outcome of glioblastoma patients. Collectively, we identified the JICD1/SMAD3-TWIST1 axis as a novel inducer of invasive phenotypes in cancer cells.


Assuntos
Glioblastoma , Humanos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Glioblastoma/genética , Proteínas de Homeodomínio/metabolismo , Ligantes , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
5.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834227

RESUMO

Glioblastoma (GBM) is the most lethal brain cancer, causing inevitable deaths of patients owing to frequent relapses of cancer stem cells (CSCs). The significance of the NOTCH signaling pathway in CSCs has been well recognized; however, there is no NOTCH-selective treatment applicable to patients with GBM. We recently reported that Jagged1 (JAG1), a NOTCH ligand, drives a NOTCH receptor-independent signaling pathway via JAG1 intracellular domain (JICD1) as a crucial signal that renders CSC properties. Therefore, mechanisms regulating the JICD1 signaling pathway should be elucidated to further develop a selective therapeutic regimen. Here, we identified annexin A2 (ANXA2) as an essential modulator to stabilize intrinsically disordered JICD1. The binding of ANXA2 to JICD1 prevents the proteasomal degradation of JICD1 by heat shock protein-70/90 and carboxy-terminus of Hsc70 interacting protein E3 ligase. Furthermore, JICD1-driven propagation and tumor aggressiveness were inhibited by ANXA2 knockdown. Taken together, our findings show that ANXA2 maintains the function of the NOTCH receptor-independent JICD1 signaling pathway by stabilizing JICD1, and the targeted suppression of JICD1-driven CSC properties can be achieved by blocking its interaction with ANXA2.


Assuntos
Anexina A2 , Glioblastoma , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Recidiva Local de Neoplasia , Receptores Notch/metabolismo
6.
Cell Rep ; 42(9): 113077, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676771

RESUMO

With the emergence of multiple predominant SARS-CoV-2 variants, it becomes important to have a comprehensive assessment of their viral fitness and transmissibility. Here, we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmissibility. Specifically, SARS-CoV-2 variants containing the NSP12 mutations P323L or P323L/G671S exhibit enhanced RNA-dependent RNA polymerase (RdRp) activity at 33°C compared with 37°C and high transmissibility. Molecular dynamics simulations and microscale thermophoresis demonstrate that the NSP12 P323L and P323L/G671S mutations stabilize the NSP12-NSP7-NSP8 complex through hydrophobic effects, leading to increased viral RdRp activity. Furthermore, competitive transmissibility assay reveals that reverse genetic (RG)-P323L or RG-P323L/G671S NSP12 outcompetes RG-WT (wild-type) NSP12 for replication in the upper respiratory tract, allowing markedly rapid transmissibility. This suggests that NSP12 P323L or P323L/G671S mutation of SARS-CoV-2 is associated with increased RdRp complex stability and enzymatic activity, promoting efficient transmissibility.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Furões , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , Mutação/genética , Replicação Viral/genética
7.
Oncol Rep ; 50(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37594135

RESUMO

Resistance to radiation therapy remains a treatment obstacle for patients with high­risk colorectal cancer. Neuromedin U (NMU) has been identified as a potential predictor of the response to radiation therapy by RNA sequencing analysis of colorectal cancer tissues obtained from patients. However, the role of NMU in colorectal cancer remains unknown. In order to investigate role of NMU in colorectal cancer, NMU expression was regulated using small interfering RNA or an NMU­expression pCMV3 vector, and cell counting, wound­healing and clonogenic assays were subsequently performed. NMU knockdown decreased colorectal cancer cell proliferation and migration, and sensitized the cells to radiation. Conversely, NMU overexpression increased radiation resistance, proliferation and migration of colorectal cancer cells. Furthermore, by western blotting and nuclear fractionation experiments, NMU knockdown inhibited the nuclear translocation of yes­associated protein (YAP) and transcriptional co­activator with PDZ­binding motif (TAZ), resulting from the phosphorylation of these proteins. By contrast, the nuclear translocation of YAP and TAZ was increased following NMU overexpression in colorectal cancer cells. Recombinant NMU regulated YAP and TAZ activity, and the expression of the YAP and TAZ transcriptional target genes AXL, connective tissue growth factor and cysteine­rich angiogenic inducer 61 in an NMU receptor 1 activity­dependent manner. These results suggested that NMU may contribute to the acquisition of radioresistance in colorectal cancer by enhancing the Hippo signaling pathway via YAP and TAZ activation.


Assuntos
Neoplasias Colorretais , Neuropeptídeos , Tolerância a Radiação , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/radioterapia , Fosforilação , Transdução de Sinais
8.
Acta Neuropathol Commun ; 11(1): 13, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647117

RESUMO

Capicua (CIC) is an important downstream molecule of RTK/RAS/MAPK pathway. The regulatory mechanism of CIC underlying tumorigenesis in oligodendroglioma, where CIC is frequently mutated, has yet to be fully elucidated. Using patient-derived glioma lines, RNA-sequencing and bioinformatic analysis of publicly available databases, we investigated how CIC loss- or gain-of-function regulates its downstream targets, cell proliferation and glutamate release. Our results indicate an increased frequency of CIC truncating mutations in oligodendroglioma during progression. In vitro, CIC modulation had a modest effect on cell proliferation in glioma lines, and no significant changes in the expression of ETV1, ETV4 and ETV5. Transcriptional repression of known CIC targets was observed in gliomas expressing non-phosphorylatable CIC variant on Ser173 which was unable to interact with 14-3-3. These data outline a mechanism by which the repressor function of CIC is inhibited by 14-3-3 in gliomas. Using transcriptional profiling, we found that genes related to glutamate release were upregulated because of CIC depletion. In addition, loss of CIC leads to increased extracellular glutamate. Consistent with this, CIC restoration in an oligodendroglioma line reduced the levels of extracellular glutamate, neuronal toxicity and xCT/SLC7A11 expression. Our findings may provide a molecular basis for the prevention of glioma-associated seizures.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Glioma , Oligodendroglioma , Proteínas Repressoras , Humanos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Glioma/genética , Ácido Glutâmico , Neurônios/metabolismo , Oligodendroglioma/genética , Proteínas Repressoras/genética
9.
Biomedicines ; 10(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359204

RESUMO

Cancer stem-like cells (CSCs) are considered promising targets for anti-cancer therapy owing to their role in tumor progression. Extensive research is, therefore, being carried out on CSCs to identify potential targets for anti-cancer therapy. However, this requires the availability of patient-derived CSCs ex vivo, which remains restricted due to the low availability and diversity of CSCs. To address this limitation, a functional polymer thin-film (PTF) platform was invented to induce the transformation of cancer cells into tumorigenic spheroids. In this study, we demonstrated the functionality of a new PTF, polymer X, using a streamlined production process. Polymer X induced the formation of tumor spheroids with properties of CSCs, as revealed through the upregulated expression of CSC-related genes. Signal transducer and activator of transcription 3 (STAT3) phosphorylation in the cancer cells cultured on polymer X was upregulated by the fibronectin-integrin α5-Janus kinase 2 (JAK2) axis and maintained by the cytosolic LMO2/LBD1 complex. In addition, STAT3 signaling was critical in spheroid formation on polymer X. Our PTF platform allows the efficient generation of tumor spheroids from cancer cells, thereby overcoming the existing limitations of cancer research.

10.
Cell Rep ; 41(8): 111626, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417870

RESUMO

Jagged1 (JAG1) is a Notch ligand that contact-dependently activates Notch receptors and regulates cancer progression. The JAG1 intracellular domain (JICD1) is generated from JAG1, like formation of the NOTCH1 intracellular domain (NICD1); however, the role of JICD1 in tumorigenicity has not been comprehensively elucidated. Here we show that JICD1 induces astrocytes to acquire several cancer stem cell properties, including tumor formation, invasiveness, stemness, and resistance to anticancer therapy. The transcriptome, chromatin immunoprecipitation sequencing (ChIP-seq), and proteomics analyses show that JICD1 increases SOX2 expression by forming a transcriptional complex with DDX17, SMAD3, and TGIF2. JICD1-driven tumorigenicity is directly regulated by SOX2. Our results demonstrate that, like NICD1, JICD1 acts as a transcriptional cofactor in formation of the DDX17/SMAD3/TGIF2 transcriptional complex, leading to oncogenic transformation.


Assuntos
Receptores Notch , Transdução de Sinais , Transdução de Sinais/fisiologia , Receptores Notch/metabolismo , Oncogenes , Células-Tronco Neoplásicas/metabolismo , Ligação Proteica
11.
bioRxiv ; 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36203545

RESUMO

With the convergent global emergence of SARS-CoV-2 variants of concern (VOC), a precise comparison study of viral fitness and transmission characteristics is necessary for the prediction of dominant VOCs and the development of suitable countermeasures. While airway temperature plays important roles in the fitness and transmissibility of respiratory tract viruses, it has not been well studied with SARS-CoV-2. Here we demonstrate that natural temperature differences between the upper (33°C) and lower (37°C) respiratory tract have profound effects on SARS-CoV-2 replication and transmission. Specifically, SARS-COV-2 variants containing the P323L or P323L/G671S mutation in the NSP12 RNA-dependent RNA polymerase (RdRp) exhibited enhanced RdRp enzymatic activity at 33°C compared to 37°C and high transmissibility in ferrets. MicroScale Thermophoresis demonstrated that the NSP12 P323L or P323L/G671S mutation stabilized the NSP12-NSP7-NSP8 complex interaction. Furthermore, reverse genetics-derived SARS-CoV-2 variants containing the NSP12 P323L or P323L/G671S mutation displayed enhanced replication at 33°C, and high transmission in ferrets. This suggests that the evolutionarily forced NSP12 P323L and P323L/G671S mutations of recent SARS-CoV-2 VOC strains are associated with increases of the RdRp complex stability and enzymatic activity, promoting the high transmissibility.

12.
Oncol Lett ; 24(5): 413, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36245828

RESUMO

Anti-angiogenesis therapy, a promising remedy against tumor progression, is now widely used to treat numerous types of cancer. Since vascular endothelial growth factor (VEGF) is the most vital factor in angiogenesis, most anti-angiogenesis drugs target the VEGF-related pathway. However, in glioblastoma (GBM), the therapeutic strategy involving the inhibition of VEGF signaling is ineffective. The present study demonstrated that the potential angiogenic function of endothelin-1 (EDN1) was upregulated by inhibitor of differentiation 1 (ID1) independent of VEGF during tumor angiogenesis. Anatomic structure transcriptomes of patients with GBM revealed that the expression levels of ID1 and EDN1 were specifically upregulated in the vascular-related region. The aortic ring assay and endothelial sprouting assay demonstrated that EDN1 more potently promoted endothelial sprouting ability than VEGF. The activity of EDN1 was induced by endothelin receptor, which seemed to mediate regulation via positive feedback. Finally, in patients with GBM who did not respond to bevacizumab, a VEGF antagonist, EDN1 expression was higher than that in bevacizumab responders. Collectively, the present study demonstrated that EDN1 is a potent angiogenic factor inducing endothelial sprouting and may be a novel target for inhibiting glioma angiogenesis.

13.
Cells ; 11(13)2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35805116

RESUMO

The oncogenic role of nuclear LIM domain only 2 (LMO2) as a transcriptional regulator is well established, but its function in the cytoplasm is largely unknown. Here, we identified LMO2 as a cytoplasmic activator for signal transducer and activator of transcription 3 (STAT3) signaling in glioma stem cells (GSCs) through biochemical and bioinformatics analyses. LMO2 increases STAT3 phosphorylation by interacting with glycoprotein 130 (gp130) and Janus kinases (JAKs). LMO2-driven activation of STAT3 signaling requires the LDB1 protein and leads to increased expression of an inhibitor of differentiation 1 (ID1), a master regulator of cancer stemness. Our findings indicate that the cytoplasmic LMO2-LDB1 complex plays a crucial role in the activation of the GSC signaling cascade via interaction with gp130 and JAK1/2. Thus, LMO2-LDB1 is a bona fide oncogenic protein complex that activates either the JAK-STAT signaling cascade in the cytoplasm or direct transcriptional regulation in the nucleus.


Assuntos
Glioma , Fator de Transcrição STAT3 , Proteínas Adaptadoras de Transdução de Sinal , Receptor gp130 de Citocina/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioma/genética , Glioma/metabolismo , Glicoproteínas/metabolismo , Humanos , Janus Quinases/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo
14.
Biotechnol J ; 17(7): e2100434, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35233982

RESUMO

Alternative cancer models that are close to humans are required to create more valuable preclinical results during oncology studies. Here, a new onco-pig model via developing a CRISPR-Cas9-based Conditional Polycistronic gene expression Cassette (CRI-CPC) system to control the tumor inducing simian virus 40 large T antigen (SV40LT) and oncogenic HRASG12V . After conducting somatic cell nuclear transfer (SCNT), transgenic embryos were transplanted into surrogate mothers and five male piglets were born. Umbilical cord analysis confirmed that all piglets were transgenic. Two of them survived and they expressed a detectable green fluorescence. The test was made whether CRI-CPC models were naturally fertile and whether the CRI-CPC system was stably transferred to the offspring. By mating with a normal female pig, four offspring piglets were successfully produced. Among them, only three male piglets were transgenic. Finally, their applicability was tested as cancer models after transduction of Cas9 into fibroblasts from each CRI-CPC pig in vitro, resulting in cell acquisition of cancerous characteristics via the induction of oncogene expression. These results showed that our new CRISPR-Cas9-based onco-pig model was successfully developed.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Transferência Nuclear , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Feminino , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Masculino , Oncogenes , Suínos/genética
15.
FASEB J ; 35(10): e21906, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34490940

RESUMO

Glioblastoma (GBM) is a refractory disease that has a highly infiltrative characteristic. Over the past decade, GBM perivascular niche (PVN) has been described as a route of dissemination. Here, we investigated that trailed membrane structures, namely retraction fibers (RFs), are formed by perivascular extracellular matrix (ECM) proteins. By using the anatomical GBM database, we validated that the ECM-related genes were highly expressed in the cells within the PVN where fibronectin (FN) induced RF formation. By disrupting candidates of FN-binding integrins, integrin α5ß1 was identified as the main regulator of RF formation. De novo RFs were produced at the trailing edge, and focal adhesions were actively localized in RFs, indicating that adhesive force makes RFs remain at the bottom surface. Furthermore, we observed that GBM cells more frequently migrated along the residual RFs formed by preceding cells in microfluidic channels in comparison to those in the channels without RFs, suggesting that the infiltrative characteristics GBM could be attributed to RFs formed by the preceding cells in concert with chemoattractant cues. Altogether, we demonstrated that shedding membrane structures of GBM cells are maintained by FN-integrin α5ß1 interaction and promoted their motility .


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular , Fibronectinas/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Vitronectina/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
16.
Anim Cells Syst (Seoul) ; 25(3): 161-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262659

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive primary brain cancer and this is due to cancer cells being apoptosis-resistant and having increased cell proliferation, migration, invasion, and angiogenesis properties. Previous studies have indicated both STAT and Notch pathways being important for initiation and progression in GBM. In this work, we first studied the effects of STAT inhibitors on Notch signalling using small molecule STAT inhibitors. It was observed that STAT inhibitors surprisingly activated Notch signalling by inducing NICD and Notch target genes in GBM cells. Thus, we aimed to combine STAT inhibitor treatment with a Notch pathway inhibitor and study effects on GBM tumourigenesis. STAT5 inhibitor (Pimozide) and STAT3 inhibitor (S3I-201) were individually used in combination with γ-secretase inhibitor (DAPT), an inhibitor of Notch signalling, in a panel of GBM cells for cell proliferation and epithelial plasticity changes. Compared with single-agent treatments, combinatorial treatments with the STAT and Notch inhibitors significantly increased apoptosis in the treated cells, impairing cell proliferation, migration, and invasion. These findings suggest that concurrent blocking of STAT and Notch signalling pathways could provide added therapeutic benefit for the treatment of glioblastoma.

17.
Cells ; 10(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204169

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy's pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.


Assuntos
Autofagia/genética , Neoplasias Encefálicas , Carcinogênese , Glioblastoma , Transdução de Sinais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos
18.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807555

RESUMO

Although the human brain would be an ideal model for studying human neuropathology, it is difficult to perform in vitro culture of human brain cells from genetically engineered healthy or diseased brain tissue. Therefore, a suitable model for studying the molecular mechanisms responsible for neurological diseases that can appropriately mimic the human brain is needed. Somatic cell nuclear transfer (SCNT) was performed using an established porcine Yucatan EGFP cell line and whole seeding was performed using SCNT blastocysts. Two Yucatan EGFP porcine embryonic stem-like cell (pESLC) lines were established. These pESLC lines were then used to establish an in vitro neuro-organoids. Aggregates were cultured in vitro until 61 or 102 days after neural induction, neural patterning, and neural expansion. The neuro-organoids were sampled at each step and the expression of the dopaminergic neuronal marker (TH) and mature neuronal marker (MAP2) was confirmed by reverse transcription-PCR. Expression of the neural stem cell marker (PAX6), neural precursor markers (S100 and SOX2), and early neural markers (MAP2 and Nestin) were confirmed by immunofluorescence staining. In conclusion, we successfully established neuro-organoids derived from pESLCs in vitro. This protocol can be used as a tool to develop in vitro models for drug development, patient-specific chemotherapy, and human central nervous system disease studies.


Assuntos
Células-Tronco Embrionárias/citologia , Organoides/citologia , Animais , Biomarcadores/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Técnicas de Transferência Nuclear , Organoides/metabolismo , Suínos
19.
Brain ; 144(2): 636-654, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33479772

RESUMO

As the clinical failure of glioblastoma treatment is attributed by multiple components, including myelin-associated infiltration, assessment of the molecular mechanisms underlying such process and identification of the infiltrating cells have been the primary objectives in glioblastoma research. Here, we adopted radiogenomic analysis to screen for functionally relevant genes that orchestrate the process of glioma cell infiltration through myelin and promote glioblastoma aggressiveness. The receptor of the Nogo ligand (NgR1) was selected as the top candidate through Differentially Expressed Genes (DEG) and Gene Ontology (GO) enrichment analysis. Gain and loss of function studies on NgR1 elucidated its underlying molecular importance in suppressing myelin-associated infiltration in vitro and in vivo. The migratory ability of glioblastoma cells on myelin is reversibly modulated by NgR1 during differentiation and dedifferentiation process through deubiquitinating activity of USP1, which inhibits the degradation of ID1 to downregulate NgR1 expression. Furthermore, pimozide, a well-known antipsychotic drug, upregulates NgR1 by post-translational targeting of USP1, which sensitizes glioma stem cells to myelin inhibition and suppresses myelin-associated infiltration in vivo. In primary human glioblastoma, downregulation of NgR1 expression is associated with highly infiltrative characteristics and poor survival. Together, our findings reveal that loss of NgR1 drives myelin-associated infiltration of glioblastoma and suggest that novel therapeutic strategies aimed at reactivating expression of NgR1 will improve the clinical outcome of glioblastoma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Bainha de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos Endogâmicos BALB C , Bainha de Mielina/patologia , Proteases Específicas de Ubiquitina/metabolismo
20.
Oncol Lett ; 20(2): 1153-1162, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32724355

RESUMO

Glioblastoma (GBM) is the most aggressive and malignant brain tumor, resulting in a poor prognosis. The current therapy for GBM consists in concurrent radiation and chemotherapy following removal of the tumor. Although the therapy prolongs patient survival, recurrence often occurs. The major cause of tumor recurrence is thought to be GBM stem cells (GSCs), which aid the development of chemo-radiotherapy resistance, and can self-renew and aberrantly differentiate. Therefore, GSCs should be targeted to eradicate the tumor and prevent recurrence. Transcriptomic analysis has categorized GBM into proneural (PN), mesenchymal and classical subtypes, and the outcome of recurrence and prognosis markedly depends on subtype. To identify specific GSC markers, the present study analyzed public microarray and RNA-seq data and identified dihydropyrimidinase-related protein 5 (DRP5) as a candidate GSC marker. DRP5 is known to mediate semaphorin 3A signaling and is involved in the regulation of neurite outgrowth and axon guidance during neuronal development. In the present study, DRP5 was specifically upregulated in the PN-subtype GSCs and served crucial roles in maintaining GSC properties, including tumor sphere formation, stem cell marker expression and xenograft tumor growth. Furthermore, bioinformatics analysis revealed that DRP5 expression was positively correlated with signatures of stemness, including Notch, Hedgehog and Wnt/ß-catenin expression, which are also known to be positively correlated with PN-subtype gene signatures. Conversely, DRP5 expression was negatively correlated with NF-κB and signal transducer and activator of transcription 3 stemness signatures, which are negatively correlated with PN-subtype gene signatures. Taken together, these findings suggested that DRP5 was specifically expressed in PN-subtype GSCs and may be used as a functional marker of PN-subtype GSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...